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Abstract: In the present work two different rules are applied to the system of the inverse pendulum. 
On the one hand, Sliding Mode Control (SMC) is used to control the position and the angular velocity 
of the pendulum attached to the cart. On the other hand, Model Predictive Control (MPC) is 
implemented in order to control the trajectory of the cart in accordance with a desired movement 
profile. In order to counteract phenomena such as "chattering" as effectively as possible, various 
measures are implemented within the Sliding Mode Control. 
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1 Introduction 

The inverse pendulum represents an underactuated 
system in which the unstable rest position is located 
at the highest point of the pendulum. Regulating this 
system means keeping the angle between the 
pendulum and the vertical axis minimal or equal to 
zero, so the cart can be moved in one axis with the 
help of an applied force. Since the system is 
underactuated, it has fewer actuators than degrees of 
freedom. This type of system is common, including 
for robots, see [1] and [2]. Sliding Mode Control, a 
system based on the Lyapunov theorem, provides 
the ability to regulate underactuated systems 
effectively. In general, SMC is a very accurate and 
robust control system which effectively counteracts 
disturbances both internal and external [3]. Due to 
the computation by means of the equations of 
motion and the associated restrictions, the Sliding 
Mode Control regulates not only the angle but also 
the angular velocity of the pendulum. This 
limitation arises because the force exerted does not 
act directly on the pendulum, but instead on the cart, 
whose movement affects the rotation and the 
angular speed of the pendulum. Both control 
variables are to be regulated to zero, so that the 
pendulum is in the equilibrium position and is 
moving as slowly as possible. 

As a second control system Model Predictive 
Control is introduced to control the trajectory of the 
vehicle in accordance with a desired movement 
profile.  

MPC predicts future values for both the state 
variables and the output variables of the system 
based on measurements and a discrete-time dynamic 
model of the process. On this basis, it is possible to 
calculate future results for k time steps in advance 
[4]. The prediction of future behaviour allows the 
calculation of an optimal input signal to replicate the 
desired trajectory as much as possible. For the 
application of this type of Model Predictive Control 
a linearization of the system is required. The 
linearization is based on the small angle 
approximation as well as on the linearization at an 
operating point. The selected operating point in this 
case corresponds to the equilibrium position of the 
inverse pendulum. 

The system is simulated using Simulink and Matlab. 
To test the functionality and the robustness of the 
arrangements, an initial angle is applied on the one 
hand and, on the other hand, noise is introduced into 
the system. Basically, the use of two control systems 
with different control variables, which are linked to 
each other, creates a conflict. The impact of this 
conflict will be analysed at the end of this work. 

Both, the characteristics of the system and the 
mechanisms that will be used for controlling the 
inverse pendulum, can be found in different 
everyday life systems. For example, Segways have 
similar characteristics as the inverse pendulum. 
Therefore, similar rules can be used for controlling 
the Segway. Also, for the control of rockets during 
launch and landing as well as for the balancing of 
robots’ similar principles are used [5]. In the 
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following sections, the system of the inverse 
pendulum is described (Section II). Subsequently, 
steps for implementing the SMC (Section III) and 
the MPC (Section IV) are explained. Finally, the 
behaviour of the controlled system is analysed 
(Section V).  

2 Description of the System of the 
Inverse Pendulum 

The dynamic behaviour of the inverse pendulum can 
be described by the following equations of motion 
[6]: 

(ݐ)ߙ̈ܬ = (ݐ)ߙ݊݅ݏ ௚݈ܨ− +݉௣̈(ݐ)ߙݏ݋ܿ ݈(ݐ)ݔ− ݇௪̇(1)            ,(ݐ)ߙ 

൫݉௣ +݉ி௚௭൯̈(ݐ)ݔ = −(ݐ)ߙ݊݅ݏ௖ܨ −(ݐ)ߙݏ݋்ܿܨ ݇௟̇(ݐ)ݔ +  (2)  .ܨ

J corresponds to the moment of inertia of the 
pendulum, Fg is the weight force, l is the length of 
the pendulum, mp and mfzg are the mass of the 
pendulum and the vehicle, kw is a combination of air 
and rolling friction of the vehicle and kl is the 
friction in the point of contact between the vehicle 
and pendulum, FT the tangential force and Fc is the 
centrifugal force resulting from the rotational 
movement. The input parameter corresponds to the 
force F, which is applied directly to the cart. 

For simplicity, it has been assumed that the rod of 
the pendulum has no mass. The system is 
represented in Figure 1.  

 

 
 

Fig. 1. Representation of the system 

3 Implementation of Sliding Mode 
Control 

Sliding Mode Control is a very robust and accurate 
control system. Based on the Lyapunov theorem, the 
system can be controlled in the position of 
equilibrium, without knowing the solution of the 
underlying system of equations. For the 
implementation of the Sliding Mode Control a so-
called cost function s(t) must be set up, which is a 
target-actual comparison between the real and the 
desired output variables [3]. In the present case the 
angle between the pendulum and the vertical axis as 
well as the angular velocity of the pendulum are the 
control variables. 

(ݐ)ݏ = ݇ ∗ ൫ߙௗ(ݐ) − +൯(ݐ)ߙ (ݐ)ௗߙ̇ −  (3)       .  (ݐ)ߙ̇

The variable k was introduced as a factor for the 
weighting of the error between the desired and the 
actual angle. Since both, the desired angle ߙௗ(ݐ) and 
the desired angular velocity ̇ߙௗ(ݐ), are zero, the cost 
function results to be:   

(ݐ)ݏ  = ݇ ∗ ൫−(ݐ)ߙ൯ −  (4)                            .(ݐ)ߙ̇

For the implementation of the Sliding Mode Control 
the equations need to be drawn up according to the 
following Lyapunov model: 

1a. ܸ൫(ݐ)ݏ൯ > 0,                                                   (5) 

1b. ܸ(0) = 0,                                                        (6) 

2.   ܸ̇൫(ݐ)ݏ൯ < 0.                                                   (7) 

By choosing the function (8) for ܸ൫(ݐ)ݏ൯ , condition 
1a is fulfilled. 
 
ܸ൫(ݐ)ݏ൯ = ଵ

ଶ
 (8)                                         .(ݐ)²ݏ

Accordingly, ܸ̇൫(ݐ)ݏ൯ results to: 

ܸ̇൫(ݐ)ݏ൯ = (ݐ)ݏ ∗ (ݐ)ݏ̇ = (ݐ)ݏ ∗ [−݇ ∗ (ݐ)ߙ̇ −          , [(ݐ)ߙ̈

 (9) 

   . 
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ܸ̇൫(ݐ)ݏ൯ = (ݐ)ݏ ∗ ൤−݇ ∗ (ݐ)ߙ̇ − ௠೛∗௚∗௟∗௦௜௡ఈ(௧)
௃

−
௠೛

మ∗௟మ∗௖௢௦ఈ(௧)∗ఈ̇మ(௧)∗௦௜௡ఈ(௧)
௃∗൫௠ಷ೥೒ା௠೛൯

+ ௠೛
మ∗௟మ∗௖௢௦²ఈ(௧)∗ఈ̈(௧)
௃∗൫௠ಷ೥೒ା௠೛൯

+

 ௞೗∗௫̇
(௧)∗௠೛∗௟∗௖௢௦ఈ(௧)

௃
− ௞ೢ∗ఈ̇(௧)

௃
+ ி(௧)

௃∗൫௠ಷ೥೒ା௠೛൯
+ ௗ(௧)

௃
൨. 

(10) 

 

In the subsequent step, the input F(t) is established 
so that the system can be controlled by cancelling 
most of the variables of the system. The resulting 
force is structured as follows: 

  

(ݐ)ܨ  = −݇ ∗ (ݐ)ߙ̇ ∗ ܬ ∗ ൫݉ி௚௭ +݉௣൯ −
݉௣ ∗ ݃ ∗ ݈ ∗ (ݐ)ߙ݊݅ݏ ∗ ൫݉ி௚௭ +݉௣൯ +
݉௣

ଶ ∗ ݈ଶ ∗ (ݐ)ߙݏ݋ܿ ∗ (ݐ)ଶߙ̇ ∗ (ݐ)ߙ݊݅ݏ +
݉௣

ଶ ∗ ݈ଶ ∗ (ݐ)ߙଶݏ݋ܿ ∗ (ݐ)ߙ̈ −  ݇௟ ∗ (ݐ)ݔ̇ ∗
݉௣ ∗ ݈ ∗ (ݐ)ߙݏ݋ܿ ∗ ൫݉ி௚௭ + ݉௣൯ − ݇௪ ∗
(ݐ)ߙ̇ ∗ ൫݉ி௚௭ +݉௣൯ − ߚ) ∗ ݇)݊݃݅ݏ ∗
ߙ− −  . (ߙ̇

(11) 

As a result of the implementation of F(t) we gain for 
ܸ̇൫(ݐ)ݏ൯: 

 

ܸ̇൫(ݐ)ݏ൯ = (ݐ)ݏ ∗ ൤−ߚ ∗ ൯(ݐ)ݏ൫݊݃݅ݏ ∗
௟∗௖௢௦ఈ(௧)∗௠೛

௃∗൫௠ಷ೥೒ା௠೛൯
+ ௗ(௧)

௃
൨  .                                           (12) 

To satisfy the statement in condition (7)  ߚ needs to 
be: 

ߚ  > ൫݉ி௭௚ + ݉௣൯ ∗
୫ୟ୶൫ௗ(௧)൯
௟∗ୡ୭ୱ(ఈ)∗௠೛

 .             (13) 

   

When implementing those functions in Matlab, it 
can be seen that the force switches back and forth 
very quickly between -100 N and 100 N. This 
phenomenon, which is called chattering, results 

from the use of the sign function. A corresponding 
fast switching of the input variables is often 
impossible or undesirable. To prevent this high-
frequency "switching", a saturation function is used 
instead of the sign function. This prevents fast 
switching, because a linear function instead of a 
discontinuous function (sign function) is used within 
the defined range Φ. However, it should be noted 
that after using the saturation function, the accuracy 
of the control decreases [3]. Another weak point of 
the Sliding mode control is the relatively slow 
response time in the first phase of the scheme, also 
called "reaching phase". In order to reduce the time 
in which the desired value of the controlled variable 
is reached, another factor may be introduced that 
weights the error between the current setpoint and 
the actual value. If the current error is high, the 
input variable is adjusted accordingly [3]. In this 
case, a corresponding factor has not been 
implemented since the system’s response time is 
sufficient for the intended purpose.  

4 Implementation of Model Predictive 
Control 

4.1   Linearization of the System 

To control the system via the chosen type of Model 
Predictive Control, it must be first linearized. For 
this purpose, two methods have been applied in this 
work. On the one hand, the angular functions are 
replaced based on the small angle approximation, 
that can be used for sufficiently small angles close 
to the operating point, by the following expressions: 

(ݐ)ߙ݊݅ݏ ≈  (14)    ,(Valid for sufficiently small angles) (ݐ)ߙ

(ݐ)ߙݏ݋ܿ ≈ 1      (Valid for sufficiently small angles).    (15) 

On the other hand, quadratic parts of the function 
were linearized. The prerequisite for this is that the 
system is solely operated in the vicinity of the 
operating point, in this case in the highest position 
of the pendulum. The more the system states deviate 
from this operating point, the greater is the error due 
to the linearization. On basis of the described 
linearization of the system, the equations of motion 
(16) and (17) are used hereafter: 

(ݐ)ߙ̈ܬ = (ݐ)ߙ ௚݈ܨ− + ݉௣̈(ݐ)ݔ ݈ − ݇௪̇(16)          ,(ݐ)ߙ 

൫݉௣ + ݉ி௚௭൯̈(ݐ)ݔ = ݉௣݈̇(ݐ)ߙ(ݐ)ߙ −݉௣݈̈(ݐ)ߙ 
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−݇௟̇(ݐ)ݔ +  .(ݐ)ܨ

 (17) 

Since the values of the angle ߙ, the angular velocity 
 arising from ߙ̈ and thus the angular acceleration ߙ̇
the system using the Sliding Mode Control run 
against zero, the equation (17) can be simplified to 
the following function. 

൫݉௣ + ݉ி௚௭൯̈(ݐ)ݔ = −݇௟̇(ݐ)ݔ +                      .(ݐ)ெ௉஼ܨ
(18) 

 constitutes the force that is generated by (ݐ)ெ௉஼ܨ
the Model Predictive Control. Based on the previous 
considerations, the relevant state-space system is 
reduced as follows: 

൤̇(ݐ)ݔ
൨(ݐ)ݔ̈ = ቈ

0 1
0 ି௞೗

(௠ಷ೥೒ା௠೛)
቉ ൤(ݐ)ݔ
൨(ݐ)ݔ̇ +

ቈ
0
ଵ

(௠ಷ೥೒ା௠೛)
቉  .(ݐ)ெ௉஼ܨ

4.2 Implementation of the control  

For the implementation of the MPC the system 
equations (16) and (18) must be discretized first to 
obtain an explicit model. For this scheme, the 
forward Euler method, which is also known as 
explicit Euler method, can be used. By using this 
method, the following applies: 

   

(ݐ)ݔ  = ݇)ݔ − 1),                           (19)  

(ݐ)ݔ̇  = ݇)ݔ̇ − 1),                           (20)  

(ݐ)ெ௉஼ܨ  = ݇)ெ௉஼ܨ − 1),               (21)  

   

and  

   

(ݐ)ݔ̇  = ௫(௞)ି௫(௞ିଵ)

ೞ்
,                       (22)  

(ݐ)ݔ̈  = ௫̇(௞)ି௫̇(௞ିଵ)

ೞ்
                        (23)  

 with ݇ = 1, 2, … ,݊ 

 

where ௦ܶ corresponds to the sampling time for 
the discretization. Thus, the following output 
system in matrix notation results: 

  

݇)ݕ  − 1) = ௞ܥ  ෠ܺ(݇ − 1),                        (24) 

  

where  

෠ܺ(݇ + 1) = ௞ܣ  ෠ܺ(݇) + ௞ܤ        ெ௉஼(݇),           (25)ܨ⃗ 

(݇)ݕ = [1    0] ෠ܺ(݇)                                          (26) 

with ݇ = 1, 2, … ,݊ 

Based on these equations, the state variables for P 
steps can be predicted. For example, for k + 1: 

݇)ොݕ + 1) = ௞ܣ௞ܥ ෠ܺ(݇) + ௞ܤ௞ܥ  ெ௉஼(݇). (27)ܨ⃗ 

By the use of recursion, the two-step distant horizon 
is calculated as shown in (28): 

݇)ොݕ + 2) = ௞ଶܣ௞ܥ ෠ܺ(݇) + ௞ܣ௞ܥ ௞ܤ (݇)ெ௉஼ܨ⃗  +
݇)ெ௉஼ܨ௞⃗ܤ௞ܥ + 1).                                               (28) 

For the controlled variable the following prediction 
can be applied:  

ሬܻ⃗ (݇) = ݇)ොݕ] + 1) ݇)ොݕ + 2) … ݇)ොݕ + ܲ)]், (29) 

ሬܻ⃗ (݇) = (݇)⃗ܺܩ  ெ௉஼(݇).                                (30)ܨ⃗ܪ+

With the general matrices that apply for G and H: 

ܩ = ൦

௞ܣ௞ܥ
…௞ଶܣ௞ܥ
௞௉ܣ௞ܥ

൪ and ܪ =

൦

௞ܤ௞ܥ 0 … 0
௞ܣ௞ܥ ௞ܤ ௞ܤ௞ܥ … 0

…
௞ܤ௞௉ିଵܣ௞ܥ

…
௞ܤ௞௉ିଶܣ௞ܥ

…
…

…
௞ܤ௞ܥ

൪. 
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The following matrices result for the described 
system of the inverse pendulum with a chosen 
prediction horizon of two steps:  

ܩ = ൤
௞ܣ௞ܥ
௞ଶܣ௞ܥ

൨ and ܪ = ቈ
௞ܤ௞ܥ 0

௞ܣ௞ܥ ௞ܤ ௞ܤ௞ܥ
቉. 

Hereinafter, an input signal is derived so that the 
deviation between the desired trajectory and the 
actual signal is minimized. For this purpose, the 
following cost function is used: 

ܬ = ଵ
ଶ
ቀ ௥ܻሬሬሬ⃗ (݇) − ሬܻ⃗ (݇)ቁ

்
ܳ ቀ ௥ܻሬሬሬ⃗ (݇) − ሬܻ⃗ (݇)ቁ +

ଵ
ଶ
ெ௉஼ܨ⃗

்
 ெ௉஼(݇).                                       (31)ܨ⃗ ܴ (݇)

Q and R are weighting matrices for the input and the 
output signal. The solution for the input signal in 
order to minimize the cost function and thus keeping 
the error between the desired and actual value as 
small as possible, is calculated by: 

ெ௉஼ܨ⃗  = ܪ்ܳܪ) + ܴ)ିଵ ்ܳܪ ቀ ௥ܻሬሬሬ⃗ −  ቁ.  (32)(݇)ܺܩ

5 Behaviour of the System 

The results after the implementation of the Sliding 
Mode Control are shown in Fig. 2 and 3. The 
parameters of the system were chosen as: 

݉ி௭௚ = 1 ݇݃,  ݉௣ = 0,1 ݇݃, ݈ = 1 ݉, ݃ =
9,81௠

௦²
, ܬ = ݉௣ ∗ ݈ଶ,  ݇௟ = 2 ே௦

௥௔ௗ
, ݇௪ =

5 ே௦
௠

, ଴ߙ = ,݀ܽݎ 0,5 ଴ߙ̈ ݀݊ܽ ଴ߙ̇ = 0, ,ݔ ݔ̈ ݀݊ܽ ݔ̇ =
0 .  

In addition, two disturbances were implemented that 
were directly applied to the angular acceleration ̈ߙ. 
The first disturbance amounts to 10 ௥௔ௗ

௦
 for 0.1 s at 

10 s and the second disturbance amounts to 
−10 ௥௔ௗ

௦
 for 0.1 s at 20 s. 

 

Fig. 2. Angle of the pendulum (Controlled by means 
of SMC) 

 

Fig. 3. Angular velocity of the pendulum 
(Controlled by means of SMC) 

The convergence of the state variables angle ߙ and 
angular velocity ̇ߙ can be achieved by using the 
SMC. Even after the implemented disturbances, the 
system reaches an angle and an angular velocity is  
close to zero within a short time. This reflects the 
robustness of the Sliding Mode. 

 Figures 4 and 5 show how the results changing after 
implementing the Model Predictive Control as the 
second control system. The parameters of the 
system were maintained in this case. The sampling 
time ௦ܶ =  and the weighting matrices Q and ݏ 0,25
R were added: 

ܳ = 1000 ∗ ቂ1 0
0 1ቃ and ܴ = ቂ1 0

0 1ቃ. 

This results in the system behaving as follows: 
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Fig. 4. Angle of the pendulum (SMC and MPC) 

 

Fig. 5. Angular velocity of the pendulum (SMC and 
MPC) 

From the comparison of the angle of the SMC-
controlled system on the one hand and the SMC & 
MPC-controlled system on the other hand, it can be 
seen that the rate, at which the angle is regulated, is 
reduced. This result is obtained because of the 
differing objectives of the two schemes. Since the 
cart moves at a certain trajectory, acceleration and 
speed of the cart are limited. In this case, both forces 
push the cart in the same direction. In Fig. 6 the 
position of the cart is represented.  

 

Fig. 6. Comparison of target and actual position 

It is noticeable when comparing the desired and 
actual position, that the actual path of the system 
exceeds the target value. The system shows the 
same behaviour without external disturbance. This 
deviation is a phenomenon that occurs because of 
the conflict of the two parallel-operated control 
systems. In addition, the accuracy of the MPC is 
reduced by the chosen simplifications and the 

linearization. As a result, there may be a deviation 
between the desired and the obtained position 

6 Conclusion and Outlook 

The results of this work demonstrate that the use of 
two different sets of controllers leads to a conflict 
for the system of the inverse pendulum. For 
example, a rapid switching of the force as an input 
signal is necessary in spite of the implemented 
saturation function. An expansion and deeper 
analysis of the impact is possible through the 
construction of a physical system. For this, a cart 
with servo motors could be implemented on a rail 
system. Using such structure, the results could be 
further validated.  
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